2 0 Fe b 20 14 A q - QUEENS PROBLEM II . THE SQUARE BOARD
نویسنده
چکیده
We apply to the n× n chessboard the counting theory from Part I for nonattacking placements of chess pieces with unbounded straight-line moves, such as the queen. Part I showed that the number of ways to place q identical nonattacking pieces is given by a quasipolynomial function of n of degree 2q, whose coefficients are (essentially) polynomials in q that depend cyclically on n. Here we study the periods of the quasipolynomial and its coefficients, which are bounded by functions, not well understood, of the piece’s move directions, and we develop exact formulas for the very highest coefficients. The coefficients of the three highest powers of n do not vary with n. On the other hand, we present simple pieces for which the fourth coefficient varies periodically. We develop detailed properties of counting quasipolynomials that will be applied in sequels to partial queens, whose moves are subsets of those of the queen, and the nightrider, whose moves are extended knight’s moves. We conclude with the first, though strange, formula for the classical n-Queens Problem. We state several conjectures and open problems.
منابع مشابه
Queens on Non-square Tori
We prove that for m < n, the n × m rectangular toroidal chessboard admits gcd(m,n) nonattacking queens except in the case m = 3, n = 6. The classical n-queens problem is to place n queens on the n × n chessboard such that no pair is attacking each other. Solutions for this problem exist for all for n = 2, 3 [1]. The queens problem on a rectangular board is of little interest; on the n ×m board ...
متن کاملA q - QUEENS PROBLEM I . GENERAL THEORY MARCH 3 , 2013
We establish a general counting theory for nonattacking placements of chess pieces with unbounded straight-line moves, such as the queen, and we apply the theory to square boards. We show that the number of ways to place q nonattacking queens on a chessboard of variable size n but fixed shape is a quasipolynomial function of n. The period of the quasipolynomial is bounded by a function of the q...
متن کاملA q - QUEENS PROBLEM . II . THE SQUARE BOARD August
We apply to the n × n chessboard the counting theory from Part I for nonattacking placements of chess pieces with unbounded straight-line moves, such as the queen. Part I showed that the number of ways to place q identical nonattacking pieces is given by a quasipolynomial function of n of degree 2q, whose coefficients are (essentially) polynomials in q that depend cyclically on n. Here we study...
متن کاملNew Results on the Queens_n2 Graph Coloring Problem
Given an n×n chess board, a queen graph is a graph with n vertices, each corresponding to a square of the board. Two vertices are connected by an edge if the corresponding squares are in the same row, column, or diagonals (both ascending and descending diagonals), this corresponds to the queen move rule at the chess game. The coloring problem on this graph consists in finding the minimum number...
متن کاملA q-QUEENS PROBLEM III. PARTIAL QUEENS
Parts I and II showed that the number of ways to place q nonattacking queens or similar chess pieces on an n× n square chessboard is a quasipolynomial function of n in which the coefficients are essentially polynomials in q. We explore this function for partial queens, which are pieces like the rook and bishop whose moves are a subset of those of the queen. We compute the five highest-order coe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014